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Abstract. The climate system as well as ecosystems might undergo relatively sudden qualitative changes in the dynamics when

environmental parameters or external forcings vary due to anthropogenic influences. The study of these qualitative changes,

called tipping phenomena, requires the development of new methodological approaches that allow modeling, analyzing, and

predicting observed phenomena in nature, especially concerning the climate crisis and its consequences. Here we briefly

review the mechanisms of classical tipping phenomena and investigate in more detail rate-dependent tipping phenomena which5

occur in non-autonomous systems characterized by multiple timescales. We focus on the mechanism of rate-induced tipping

caused by basin boundary crossings. We unravel the mechanism of this transition and analyze, in particular, the role of such

basin boundary crossings in non-autonomous systems when a parameter drift induces a saddle-node bifurcation in which

new attractors and saddle points emerge, including their basins of attraction. Furthermore, we study the detectability of those

bifurcations by monitoring single trajectories in state space and find that depending on the rate of environmental parameter drift,10

such saddle-node bifurcations might be masked or hidden and they can be detected only if a critical rate of environmental drift

is crossed. This analysis reveals that quasi-stationary saddle points in non-autonomous multistable systems are the organizing

centers of the global dynamics and need much more attention in future studies.

1 Introduction

The climate system consists of many interacting components (Ghil and Lucarini, 2020; Franzke et al., 2015). These compo-15

nents could either be different compartments of the climate system itself, e.g., atmosphere, hydrosphere, cryosphere, and

biosphere, or zooming into one of such compartments, e.g., the velocity components of the ocean flow or the abundances of

different species in an ecosystem. Though there is no standard definition of a complex system, many researchers agree on

the following properties inherent to such systems: (1) The interactions between the components and/or the external forcing of

the system are, in general, characterized by nonlinearities that give rise to various positive and negative feedbacks possibly20

resulting in unexpected changes of the dynamics when intrinsic parameters or external forcings are varied; (2) These nonlinear

interactions lead to the emergence of a remarkably complex, partly unpredictable temporal dynamics or to the ability of the

system to spontaneously form temporal, spatial or spatiotemporal patterns; (3) Random fluctuations, which are unavoidable in

natural systems, lead to dynamics that are governed by both deterministic and random behaviors.
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The study of the impact of nonlinearities in the geosciences has a long history concerning investigations of (i) chaotic dynam-25

ics leading to obstructions to predictability (Lorenz, 1963; Smith et al., 1999; Tel et al., 2020), (ii) scaling properties of various

geophysical processes (Lovejoy and Schertzer, 2012; Schertzer and Lovejoy, 2011), (iii) the formation of coherent structures in

flows (Wiggins, 2005; Mancho et al., 2013; Haller, 2015; d’Ovidio et al., 2004) and their impact on marine ecology (Kai et al.,

2009; Rossi et al., 2014; Sandulescu et al., 2007) to name only a few. Several phenomena in the climate system, like the break-

down of the Atlantic part of the thermohaline ocean circulation (Atlantic Meridional Overturning – AMOC) (Rahmstorf, 1995;30

Weijer et al., 2019; Lohmann et al., 2021), the loss of Arctic sea ice (Notz, 2009; Eisenman and Wettlaufer, 2009; Eisenman,

2012), or the loss of species in ecosystems (Gossner et al., 2016; Binzer et al., 2012; Ficetola and Denoel, 2009) have been

discussed in the past in terms of classical bifurcation theory. i.e., the approach describing qualitative changes in the long-term

dynamics of a nonlinear system when a control parameter is varied and crosses critical thresholds (Guckenheimer and Holmes,

1986; Ott, 1992; Alligood et al., 1992). The study of such transitions from a more general point of view has been intensified35

during the last decade due to the need to develop an appropriate mathematical methodology to tackle the problems of the

climate crisis. Two properties of the climate system call for extensions of classical bifurcation theory leading to the new no-

tion of critical transitions: (1) Most processes are multi-scale processes in space and time, i.e., different physical, chemical

or biological processes immanent to the system evolve on different temporal and spatial scales. (2) Many critical transitions

are observed in a time-dependent environment, such that the control parameters – either intrinsic to the dynamics or to the40

strength of an external forcing – vary with a certain arbitrary time-dependence manifested by a specific trend. As long as

the environment evolves on a much slower timescale than the intrinsic dynamics, classical bifurcation theory is still appro-

priate, and a quasi-stationary approach can be used to study the response of a nonlinear system concerning climate change.

This situation changes as the rate of environmental change becomes comparable with the timescale of the intrinsic dynamics,

particularly the rate of dissipation in the system. While classical bifurcation theory has been developed to deal with models45

that are either periodically forced or autonomous systems, the most important challenge is now to extend the notion of critical

transitions to non-autonomous systems. In addition, temporal changes in the external forcing following specific trends and

mimicking climate change often happen on a different timescale than the timescale of the intrinsic dynamics of the system

under consideration. These timescale separations lead to partly unexpected behaviors and must be studied in more detail.

In this paper, we review the classification of tipping phenomena, explain their mechanisms, and give examples of their50

occurrence in climate science and ecology (Sec. 2 and Sec. 2.1). Special emphasis is given to discussing the impact of the

different time scales of the various physical, chemical, or biological processes. Therefore, the main focus is on rate-induced

transitions in which the rate of change in environmental conditions leads to new bifurcation phenomena in non-autonomous

systems. We explain the different consequences of rate-induced transitions and point out that time-dependent variations of an

external forcing can shift the focus from stable long-term states (attractors) to unstable states of saddle type and their stable and55

unstable manifolds (Sec. 3). This approach leads to a fresh view on the role of unstable states in the dynamics of any nonlinear

system subject to a parameter drift. In addition, we show that classical bifurcations, which occur in a nonlinear system due to

time-dependent changes of internal parameters or external forcing, can be masked for certain initial conditions depending on

the rate of parameter change. This masking is due to time-dependent changes in the basins of attraction, which might happen
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Figure 1. Sketch of the potential (stability landscape) of a bistable system.

in the course of the variation of external forcing. More specifically, the boundaries of the basins of attraction, which separate60

regions of qualitatively different behavior in state space, start moving under time-dependent variation of intrinsic parameters

or external forcing, giving rise to unexpected changes in the course of certain trajectories. This process leads to a variation of

the relative size of the basins of attraction and to rate-induced tipping of trajectories by “crossing basin boundaries”. Finally,

we discuss the results in Sec. 4 and point out several consequences of this dynamics such as, e.g., the occurrence of other than

rate-induced critical transitions can occur without any warning.65

2 Multistability as a prerequisite for tipping phenomena

In many cases, tipping phenomena require the simultaneous existence of several different stable states of a system under the

same given environmental conditions. Bi- and multistability can best be illustrated by a stability landscape represented as a po-

tential (Fig. 1). The stable states are in the valleys, while the unstable states are on the hills. This view of a stability landscape in

terms of a potential is always correct for a one-dimensional system following a dynamical equation ẋ = f(x) =−dV
dx or in case70

of a higher-dimensional gradient system represented by ẋ = f(x) =−∇V . However, most nonlinear dynamical systems are

not gradient systems, but even in that case, one can compute the stability landscape as a quasipotential (Freidlin and Wentzell,

1998; Graham et al., 1991; Cameron, 2012).

Here, stability of a state means linear stability with respect to small perturbations given by the eigenvalues of the correspond-

ing Jacobian matrix for steady states x(s) Jij = ∂fi

∂xj
|x=x(s) , or the Jacobian matrix Jp of the Poincaré map for periodic states.75

Small perturbations are damped out by the system due to dissipation, and the system returns to its original state. To view it in

the picture of the stability landscape: the disturbance displaces the stable state visualized by the ball away from the valley and

"rolls" back again due to the steepness of the walls of the potential V corresponding to the strength of the restoring forces. On

the hill, which relates to an unstable state, only a very small disturbance is needed to initiate the ball to "roll" either to one or the

other side of the hill, depending on the direction of the disturbance. These unstable states and, in higher-dimensional systems,80

their stable manifolds make up the boundaries of the basin of attraction of the stable state, i.e. the set of initial conditions which

all converge to the same state in the long-term limit.
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In this setup, critical transitions are associated with a relatively sudden qualitative change of the dynamics in which the

system moves from one stable state to another, i.e. the system tips by getting from one valley into the other by different

mechanisms. In general, those mechanisms are related to certain disturbances, kicking the system out of the position in the85

valley such that the other valley can be reached. However, it is essential to note that a specific tipping phenomenon, namely

rate-induced tipping, does not necessarily require the existence of bi- or multistability. Instead, in those critical transitions, it is

sufficient that the system trajectory moves into a part of the state space with different properties. Therefore tipping, in general,

cannot always be identified with the well-known classical bifurcations but can, particularly in rate-induced tipping, only be

explained as bifurcations in non-autonomous systems.90

2.1 Mechanisms of tipping and the role of different time scales

Often the picture of the stability landscape mentioned above is translated into a specific bifurcation diagram exhibiting hys-

teresis, showing the two stable states and the unstable one separating those two depending on the intrinsic parameters of the

system or the external forcing (cf. Fig.2). In the representation of the stability landscape, it is rather simple to explain the

different disturbances that cause a system to tip. On the one hand, the state variables such as, e.g., temperature and salinity as95

quantities determining the water density in the ocean or the abundance of species in an ecological system can be disturbed.

These disturbances correspond to the displacement of the state from the valley of the fixed stability landscape, depicted as a

vertical path of perturbations in Fig. 2. On the other hand, disturbances in the system parameters or external forcings change

the stability landscape, corresponding to a horizontal path of perturbations in Fig. 2. Both types of disturbances are possible

and have very different effects (Schoenmakers and Feudel, 2021). Such disturbances can occur in three different ways: (1) fluc-100

tuations, i.e., small random perturbations of the state variables or the driving forces of the system that satisfy certain statistics,

(2) large individual disturbances that correspond to extreme events or shocks, and (3) changes in environmental conditions or

driving forces associated with certain trends, whereby a rate of change can characterize this trend. In nature, one would always

observe a combination of these disturbances, but for theoretical investigations of tipping mechanisms, it is helpful to analyze

the individual types of disturbances separately.105

Next, we illustrate the different tipping mechanisms in Fig. 3 following essentially the classification introduced by Ashwin

et al. (Ashwin et al., 2012). To this end we look at a bistable system, as shown in the stability landscape in Fig. 1 and its

disturbances Fig. 2. Changing environmental conditions, represented as a control parameter, cause the stability landscape to

change, and there is generally an interval of environmental conditions in which bistability is present. For illustration purposes,

let us assume that the two stable states would be two alternative states in an ecosystem. The desired state denoted by A is110

characterized by, e.g., a high biomass of plants and the lower undesired state B is characterized by a low biomass of plants.

Further, we assume that the increasing change of the environmental conditions points to rising habitat destruction either by

land use change or climate change.

Bifurcation-induced tipping: Environmental changes, e.g., increasing habitat destruction, can affect the growth of plants.

If those environmental changes are very slow, then the ecosystem state would slowly "move" along the solid line A to the right115

to smaller biomass states but still on the upper branch until it reaches the tipping point beyond which the state of high biomass
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Figure 2. Relationship between the stability landscape and the control parameters/the forcing of the system. Cyan arrows indicate the changes

in control parameters or forcings, the light green arrows refer to changes in the state variables.

A ceases to exist. This tipping point is linked to the fact that one of the minima in the stability landscape disappears when

the critical threshold value of the environmental conditions is exceeded. Hence, the system tips into the low biomass state B,

the only one existing for those environmental conditions. In general, such critical transitions, associated with a characteristic

qualitative change in the stability landscape, such as the emergence of new or the disappearance of existing stable states, are120

called bifurcation-induced transitions (Fig. 3a).

Let us discuss some examples of bifurcation-induced tipping in the climate system and ecology. Over the past decade, a

number of tipping elements, i.e., climate phenomena, have been identified as candidates expected to tip in the further course of

climate change (Lenton et al., 2008; Schellnhuber et al., 2016; Armstrong McKay et al., 2022). Those tipping elements include

flow patterns in the ocean, parts of the biosphere and the cryosphere. Specifically, these include, e.g., the AMOC, the Greenland125

ice sheet, the Arctic sea ice, and the Western Antarctic Ice Sheet as physical systems (hydrosphere and cryosphere), the Amazon

rainforest, the tropical coral reefs and the boreal forests as ecological systems. In those systems, bi- or even multistability

has been discovered. For the AMOC, at least two different stable flow patterns exist: one of them can be considered as a

conveyor belt transporting heat to the Northern latitudes, releasing this heat to the atmosphere, forming North Atlantic Deep

Water (NADW) which is transported back to the Southern latitudes at considerable depth. The other stable state would be a130

reverse circulation pattern. This bistability can give rise to a possible breakdown of the AMOC, which has been discussed
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Figure 3. Illustration of the four different tipping mechanisms: a) bifurcation-induced tipping, b) noise-induced tipping, c) shock-induced

tipping, d) rate-induced tipping with a tracking trajectory, e) rate-induced tipping with a tipping trajectory. For explanations, see the text.

This figure has been modified from our paper (Vanselow et al., 2022a)
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employing several conceptual models (Stommel, 1961; Rahmstorf, 1996; Rooth, 1982; Wood et al., 2019) as well as in large

ocean circulation models (Rahmstorf, 1995; Weijer et al., 2012). For the latter, it has been shown that the system is even

multistable (Rahmstorf, 1995; Mehling et al., 2022) with different spatial patterns of heat transfer to the atmosphere. The

possible melting of the Arctic Sea ice is also discussed in terms of bistability comprising two stable states in one of which the135

Arctic Sea ice disappears to a large extent in summer and shows ice cover only in winter (Notz, 2009; Eisenman and Wettlaufer,

2009; Eisenman, 2012), while the other corresponds to an ice cover for the whole year. Examples of alternative states in

ecosystems are manifold (cf. (Folke et al., 2004) and references therein). A prominent example in which such critical transitions

are nowadays already observed are tropical coral reefs, which are found to be overgrown with green algae due to climate change

and other anthropogenic influences. As a result, the system tips or collapses from a coral-dominated into an algae-dominated140

reef (Holbrook et al., 2016). Another ecological example from Europe is shallow lakes, which, due to increasing nutrient inputs

from agriculture, tip from a clear water state with high visibility at a large depth, which allows for plant cover at the bottom

of the lake, to a turbid water state with high algae concentrations and no plants due to the lack of light for photosynthesis

(Scheffer et al., 1993).

It is important to note that bifurcation-induced tipping is not restricted to the shown saddle-node bifurcation, but many other145

bifurcations can be related to tipping phenomena (Boettiger et al., 2013). There is a large variety of possible bifurcations in the

mathematical literature, local (Guckenheimer and Holmes, 1986) and global (Kuznetsov, 1995) ones. Still, only a few of them

have been addressed so far concerning tipping in climate and ecology.

Noise-induced tipping: This tipping process is caused by fluctuations (Fig. 3b) that cannot be avoided in natural systems,

as all quantities describing the physical environment, such as, e.g., temperature and precipitation, are subject to fluctuations.150

Noise-induced transitions are based on the fact that the system, the ball, is permanently disturbed by the fluctuations of different

sizes and directions at the minimum of the stability landscape. As a response to fluctuation-induced kicks of the ball away from

the valley, it is “rolling” towards the minimum again because of the immediate onset of restoring forces. Since fluctuations

occur at any instant, the next kick usually occurs before the original stable state is reached again. Therefore, a suitable sequence

of kicks – the most probable exit path (Maier and Stein, 1992; Khovanov et al., 2008; Kraut and Feudel, 2003) – can push the155

system over the hill and, hence, it tips into the other state (Fig. 3b). In Fig. 2, this path would correspond to a sequence of

disturbances that pushes the systems state along a vertical path over the dashed line corresponding to the hill (green arrow) and

subsequently approaching the alternative state B along the brown arrow. There is a vast literature on noise-induced transitions

in many different science disciplines since they have been studied since the 80’s (Horsthemke and Lefever, 1984; Kuehn, 2011).

Such noise-induced tipping is hypothesized to be responsible for the regime shift observed in the dominance of two species160

– a snake star and a crab species – living in the sediment of the North Sea at the end of the 90s. This change in dominance

took place without any significant changes in environmental conditions and, hence, cannot be attributed to bifurcation-induced

tipping but rather to a change in fluctuations in the water movement (Van Nes et al., 2007). This observation highlights an

important property of noise-induced transitions: they can occur without any environmental changes, i.e., without changing the

stability landscape. With a fixed stability landscape, the strength of the fluctuations, their statistical properties, and the height165

of the potential barrier that must be overcome are the main essential factors governing this transition.
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Noise-induced transitions have also been shown to be a crucial mechanism of tipping in the climate system, as climate change

involves not only shifting mean values such as global temperature associated with global warming (Freund et al., 2006) but

also changing the variability of environmental parameters, such as, e.g., changing precipitation patterns in the Indian monsoon

towards more extreme precipitation events (Goswami et al., 2006). Deep convection in the Labrador Sea as a part of deep water170

formation and heat exchange with the atmosphere in the AMOC was investigated as an example of noise-induced transitions in

the climate system. This convection –a very local phenomenon– is bistable, i.e., there are years when deep convection events

take place in so-called convection chimneys to drive deep water formation, and there are other years when this is not the case. It

has been shown that fluctuations in temperature and salinity in the ocean can contribute to a shutdown of convection chimneys

and thus to a weakening of the AMOC (Kuhlbrodt et al., 2001; Lenderink and Haarsma, 1994).175

Shock-induced tipping: While noise-induced tipping causes the system to tip through a whole sequence of small distur-

bances, shock-induced tipping is caused by a single large disturbance (Fig. 3c). In nature, this could correspond to an extreme

event that can push a system over the hill in the stability landscape. This tipping mechanism corresponds to the stability mea-

sure of ecological resilience introduced by Holling (1996), defined as the smallest possible disturbance that can cause a system

to tip. In mathematical terms, this disturbance corresponds to the smallest distance to the basin boundary of a stable state,180

which is simple to compute in low-dimensional systems (Klinshov et al., 2015; Mitra et al., 2015), but needs to be calculated

by an optimization procedure in high-dimensional systems (Halekotte and Feudel, 2020).

Calculating such smallest disturbances in ecological networks also provides valuable information about which system parts

are most vulnerable to extreme disturbances. In this way, it can be shown that in networked ecosystems of plants and their pol-

linators, particularly those species have the highest extinction risk that are specialists or species that are part of a tree-like struc-185

ture in the graph of the network having only a very loose connection to the core of the species’ network (Halekotte and Feudel,

2020). Indications for the role of extreme events in tipping phenomena can also be found in coral reefs, where a massive

decrease in sea urchins in an epidemic process has been identified as a crucial factor in the collapse of a coral reef. This tran-

sition can be interpreted as shock-induced tipping by the " epidemics " event combined with other extreme events such as two

devastating cyclones (Mumby et al., 2007).190

Rate-induced tipping: This tipping mechanism describes a system’s response to an environmental change associated with a

particular trend. It differs from those discussed so far by three essential points: (1) In this mechanism, the relationship between

the time scales of the physical, chemical, and/or biological processes in the system under consideration, i.e., the intrinsic

time scales and time scale or rate of the trend of environmental changes plays a decisive role. (2) This mechanism does not

necessarily require the existence of alternative stable states. (3) The critical threshold value is not determined by a specific195

environmental parameter itself, but by the rate of its change, which is, of course, strictly speaking, also a parameter of the

system, but a very particular one. In other words, the speed at which environmental changes occur is crucial. Additionally, it is

important to note that this tipping phenomenon is associated with the dynamics in a non-autonomous system. For a thorough

mathematical description, we refer to the seminal papers by Ashwin et al. (Ashwin et al., 2012, 2017) and Wieczorek et al.

(Wieczorek et al., 2011).200
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One mechanism of rate-induced critical transitions is illustrated in Fig. 3d,e where the whole stability landscape is moved

at a certain rate. Suppose that the stability landscape in Fig. 3d is pulled with a certain rate towards the right. Consequently,

the ball will no longer be located in the minimum of the valley but will be displaced to the left. The restoring forces will

start acting, and the ball begins to "roll” to catch the moving minimum. If the pulling rate is slow, then the stable state (ball)

follows, or we say it tracks the minimum of the stability landscape. By contrast, in Fig. 3e, the rate of "pulling away" the205

stability landscape is much faster or comparable with the time scale of the restoring forces. In this case, the ball lands in a

completely different region in state space, leaving the minimum’s proximity and leading to qualitatively different dynamics.

This large excursion in state space corresponds to rate-induced tipping since the system visits very different parts of the state

space with qualitatively different behavior. If the change in the environmental conditions stops, this visit to a different state will

be transient and, finally, the system returns to the stable quasi-stationary state, which has moved. The second mechanism of210

rate-induced transitions occurs in multistable systems, where the trajectory can cross the basin boundary (Ashwin et al., 2012;

O’Keeffe and Wieczorek, 2020; Lohmann et al., 2021), called basin instability in O’Keeffe and Wieczorek (2020), and basin

crossing in Lohmann et al. (2021). We will discuss this mechanism of basin boundary crossing in the next section in more

detail.

Again, let us look at an ecosystem as an example: If, for example, environmental changes occur very slowly, as in bifurcation-215

induced tipping, the species in the ecosystem have enough time to adapt to the changed environment. Conversely, if, e.g.,

climate change happens too fast, species adaptation fails, and, as a result, ecosystems can collapse. For example, this mechanism

can be demonstrated in predator-prey systems, where the prey’s habitat is destroyed by climate change or anthropogenic

influences like land use change. It is possible to determine a critical rate of environmental changes beyond which the ecosystem

collapses (Siteur et al., 2016; Vanselow et al., 2019). In other ecosystems, it can also happen that a particular species grows220

to very high abundances, for instance, forming a (possibly harmful) algal bloom (Vanselow et al., 2022b). Such rate-induced

critical transitions exist not only in ecosystems but also in physical systems, such as the Greenland ice sheet (Klose et al., 2023).

In summary, considering that environmental destruction is accelerating, this tipping mechanism seems particularly dangerous.

Tipping in spatially extended pattern-forming systems: In the previous analysis, the considered systems are spatially

homogeneous and, therefore, usually modelled by ODEs or time discrete systems (maps). However, complex systems in space225

are often characterized by the fact that they can spontaneously form spatially inhomogeneous patterns resulting from, e.g.,

a Turing bifurcation (Turing, 1952). With respect to tipping phenomena, pattern-forming systems play a special role since

spatial interactions can lead to an acceleration or to a slowing down of tipping in adjacent points in space. Due to the spatial

interactions, one observes often gradual tipping (Bel et al., 2012; Siteur et al., 2014; Bastiaansen et al., 2020a, b; Hasan et al.,

2022), i.e., tipping is only visible locally. Therefore the tipping of the entire system is completed only on a much longer time230

scale: Instead of relatively abrupt critical transitions, one observes a transition that occurs "step by step" via different spatial

patterns.
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3 Basin boundary crossing in coupled bistable systems: the role of time scales

3.1 Rate-dependent basin boundary crossing in one-dimensional ecosystems

To analyze the role of time scales as well as the role of saddles (invariant sets of saddle type possessing stable and unstable235

manifolds), we will employ different simple models from population dynamics. We start with a one-dimensional model of the

growth of a population influenced by an Allee effect. The Allee effect describes the ecological fact that certain populations

need a minimal critical population density to grow (Stephens et al., 1999), i.e., only with an initial density above the critical

one the probability for successful reproduction is large enough to ensure the growth of the population. On the other hand, if

the initial population density is below the critical one, the species goes extinct. In mathematical terms, this effect is included240

in the growth rate and can be written in the simplest form as follows:

Ẋ = rX
(
1− X

K

)(
b−X

)
−mX, (1)

where r is the growth rate, K is the carrying capacity of the environment, b is the minimal critical population density, and m

denotes the mortality rate. This model has three different steady states:

X(1) = 0, (2)245

X(2,3) =
K + b

2
∓

√
(K + b)2

4
−

(
bK +

mK

r

)
. (3)

While the first and the third are stable, denoting either that the population gets extinct or reaches a population density close to

its carrying capacity K (if mortality m is low), the second one is unstable and corresponds to a population density close to the

minimal critical population density. Hence, we have a bistable system as long as the following condition is met: 0 < b < K.

The basins of attraction of the two different stable long-term states are separated by the unstable steady state. In this simple250

one-dimensional model, this unstable steady state is the only point making up the basin boundary.

Let us now assume that changes in the environment lead to changes in the critical population density b with a certain rate v.

This variation is assumed to happen on a finite time interval to ensure that the saddle-node bifurcation at which the unstable

X(2) and the stable (X(3)) steady states merge is avoided. This excludes an extinction of the species due to bifurcation-induced

tipping to X(1). The corresponding model system can be written as follows:255

Ẋ = rX
(
1− X

K

)(
b−X

)
−mX, (4)

ḃ =





v for 0≤ t≤ Tr,

0 for Tr < t≤ Tend.

We apply a linear drift of parameter b in the interval [bstart, bend] with bend < K. This drift extends over a time Tr corre-

sponding to a rate v = (bend− bstart)/Tr. For times larger than Tr, the parameter b is held constant. Since we are interested

in the dynamics in the whole state space, particularly in the dynamics of the basins of attraction and their boundaries, we260

always start with a set of initial conditions distributed on a regular grid and monitor the convergence of all initial conditions
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Figure 4. Time evolution of trajectories of system Eqs. 5 with parameter drift in b with 1.5≤ b≤ 2. The movement of the saddle point

demarking the basin boundary is shown in magenta. All trajectories colored red would have converged in the frozen-in case b = 1.5 to

the extinction state X(1), while blue trajectories would have converged to the high population state X(3). Parameters: r = 2.0, K = 3.0,

m = 0.02, v = 0.5, Tr = 1.0.

and check their long-term dynamics. Furthermore, we always compare the dynamics to those without the parameter drift, i.e.,

the convergence to the final states in the frozen-in case with constant parameter b = bstart.

Varying the critical population density means moving the two quasi-stationary states X(2)(b(t)) and X(3)(b(t)), with X(2)

corresponding to the location of the basin boundary. We expect that trajectories that have originally converged to X(3) will now265

tip and reach the population extinction X(1). By coloring the trajectories with two different colors indicating to which basin of

attraction they belong in the frozen-in case, we visualize how many trajectories now tip for the chosen rate of environmental

change (Fig. 4).

We find that for this given rate of change of environmental conditions already, quite a large number of trajectories’ initial

conditions tip to extinction. Increasing the rate of change v will force more and more trajectories to tip, and population extinc-270

tion becomes more and more probable. The movement of the unstable steady state X(2) leads to an increase in the relative size

of the basin of attraction of extinction X(1), while the relative size of the basin of attraction of the large population density

X(3) shrinks. If we would allow b(t) to increase even further, the basin of attraction of X(3) would finally disappear com-

pletely when the unstable saddle X(2)(b(t)) merges with the stable large population density state X(3)(b(t)) in a saddle-node

bifurcation.275

The mechanism, how trajectories in this one-dimensional case tip, is observable in Fig. 4, they cross the basin boundary

directly when they “meet” the moving saddle point. Since the time scale with which the quasi-stationary saddle point moves

and the speed of the trajectory are different, each initial condition possesses its own critical rate when it tips for the first time.
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3.2 Basin boundary crossing and the emergence of multistability

To gain more insights into the interplay between the rate of moving basin boundaries due to environmental change and the280

intrinsic dynamics’ timescale, we analyze a higher-dimensional problem in which smooth basin boundaries can be considered

as hypersurfaces partitioning the state space into regions of different qualitative behavior. The basin boundaries correspond in

the frozen-in case to the stable manifolds of a saddle point. For the sake of simplicity, we would like to analyze two coupled

bistable systems, which can be coupled in two different ways, unidirectional and bidirectional. In the context of the simple

population dynamical model analyzed above, it could be interpreted as two habitats (patches) bearing the same species which285

can move or migrate between the habitats. An ecologically relevant bidirectional coupling would be migration based on the

population differences between the habitats, i.e., a diffusive coupling.

To be more general, we choose to consider not only an ecological example but a general bistable model of the form:

Ẋ =−ε(X − s1)(X − s2)(X − s3). (5)

Any bistable system can be brought into this form using a specific coordinate transformation outlined in (Kouvaris et al., 2012).290

The three steady states are given by X(1) = s1, X(2) = s2 and X(3) = s3 and depend in general on the intrinsic parameters

of the system. The ecological example discussed above can be brought into that form by assuming a small input of species

into each habitat resulting in two stable states with high and low population density to avoid extinction (Sharma et al., 2015).

Another example is the famous Schlögl reaction (Schlögl, 1972), an autocatalytic chemical reaction extensively studied since

the 80s (Ebeling and Malchow, 1979; Grassberger, 1982; Mou et al., 1986).295

Since our focus is on the role of time scales, we have introduced an additional parameter ε, which describes only the

timescale of intrinsic dynamics of the system. For our ecosystem above, this would be the turnover time of the population,

often denoted as the ratio between growth and mortality rate. To investigate the role of emerging and moving basin boundaries,

we couple the two systems in three different coupling schemes: (1) unidirectional as a master-slave system, (2) bidirectional

as a mutual forcing in both ways, and (3) bidirectional with a diffusion-like coupling. Though the diffusive coupling is the300

most relevant for many physical systems, we have included the other two coupling schemes here for more generality since they

are widely used in the literature to investigate tipping cascades (Klose et al., 2020; Kroenke et al., 2020; Wunderling et al.,

2021). The coupling strength determines how many stable states coexist in the coupled system. Taking the coupling strength

as a bifurcation parameter in the classical sense as frozen-in, i.e., constant, the coupled system possesses one, two, three, or

four attractors in the long-term limit. Changing the coupling strength in time means traversing the bifurcation diagram, as long305

as the rate of environmental change would be very slow such that the intrinsic dissipative timescale is fast enough to bring

the system quickly to the attractor. However, we are interested in the case where intrinsic dynamics and the variation of the

coupling strength are comparable in their timescales. In addition, we focus on the situation in which the number of stable

long-term states changes and, with it, the global organization of the dynamics in state space. We consider the simplest case

when two new steady states, an attractor and a saddle, are born in a saddle-node bifurcation, and a new basin of attraction310

emerges and grows. The stable manifolds of the saddle point emerging in such a classical saddle-node bifurcation make up the

boundaries of the newly formed basin of attraction.
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3.3 Coupled systems with master-slave coupling

As the first coupling scheme, we consider a unidirectional coupling corresponding to a master-slave configuration:

Ẋ1 = −ε1(X1− s1)(X1− s2)(X1− s3) + cX2, (6)315

Ẋ2 = −ε2(X2− s1)(X2− s2)(X2− s3). (7)

System 2 appears as a driver or master for system 1. To analyze the dynamics in the most intuitive way, we use the concept

of nullclines, which are given by the algebraic equations Ẋ1 = f1(X1,X2) = 0 and Ẋ2 = f2(X2) = 0. While for the driver

system 2, the nullclines are given by straight lines at the values of the three steady states of system 2, the nullcline of system

1 is represented by the cubic function X2 = ε1(X1− s1)(X1− s2)(X1− s3)/c. The intersection points of f1 = 0 and f2 = 0320

are the steady states of the master-slave system. Their stability can be computed from the eigenvalues of the corresponding

Jacobian. Depending on the internal parameters ε1 and the coupling strength c, the system possesses two, three, or four stable,

steady states in the considered parameter range of coupling strength c. Throughout the paper, we fix the parameters defining

the steady states of the uncoupled system to s1 = 1.0,s2 = 2.0,s3 = 3.0 and vary only c, ε1 and ε2 to focus on the role of

time scales. This means the two systems are identical and vary only in their timescales and coupling strength, which, in this325

coupling scheme, corresponds to the strength of the impact of the driver. We are fixing all parameters (frozen-in case) and

compute the attractors and their corresponding basins of attraction by choosing a grid of initial conditions in a specified region

of state space and integrating them all in parallel until they reach the attractor. Two such cases, which serve as the beginning

and the end point of the parameter drift along a linear ramp, are illustrated in Fig. 5. This allows us to compute also the relative

size of the basins of attraction BA as the quotient of the number of initial conditions converging to attractor A divided by the330

total number of initial conditions taken into account (Feudel et al., 1996). Fig. 5 shows that the state space is “partitioned” into

different basins of attraction with basin boundaries separating them. In the frozen-in case, the basin boundaries are invariant

sets that cannot be crossed by trajectories and, hence, represent rigid boundaries in state space for the trajectories.

To investigate the impact of a time-varying environment, we change the coupling parameter c with a certain rate v. The

corresponding dynamical system is now explicitly time-dependent. It involves a third differential equation for the dynamics of335

the environment, which is in the master-slave setup, the strength of the driver:

Ẋ1 = −ε1(X1− s1)(X1− s2)(X1− s3) + cX2, (8)

Ẋ2 = −ε2(X2− s1)(X2− s2)(X2− s3), (9)

ċ =





v for 0≤ t≤ Tr,

0 for Tr < t≤ Tend.
(10)

The most interesting dynamics happen with a parameter drift along which the number of attractors changes and saddle-node340

bifurcations lead to new attractors. This setup is suitable to elucidate the relative size of the basins of attraction and tipping

probabilities for different initial conditions depending on the rate of change in the driver strength v.

As mentioned above, classical bifurcations occur along the course of parameter variation giving rise to new invariant sets (in

this case, steady states) and new basins of attractions, including their boundaries that lead to a new “partitioning” of the state
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Figure 5. Basins of attraction depending on the strength of coupling c for the case of constant c (frozen-in case) with c = 0.4 (left panel) and

c = 0.1 (right panel). Magenta and green curves are the nullclines Ẋ1 = 0 and Ẋ2 = 0. Attractors are indicated by ’*’. There is no timescale

separation between the subsystems: ε1 = 1, ε2 = 1.

space with tremendous consequences for single trajectories. To illustrate this, we investigate the following scenario, which is345

inspired by the scenarios of parameter drift used by Kaszas et al. (Kaszás et al., 2019): We change the impact of the driver

decreasing c with a constant rate v in the interval [0.4,0.1] and as soon as c = 0.1 is reached it is kept constant. This change

corresponds to a parameter drift or a ramping similar to many other papers studying rate-induced transitions (Ashwin et al.,

2012; Vanselow et al., 2019). The advantage of this piecewise linear parameter drift is that we can compute the basins of

attraction in the frozen-in cases at the start at t = 0 and the end t = Tend of the whole drifting process to have those basins to350

quantify the change induced by the parameter drift.

As in the previous subsection, we vary the rates of environmental change by varying the time interval Tr, keeping the c-

interval fixed. The course of this time evolution of c is passing two saddle-node bifurcations. They can be computed analytically

and happen at ccrit1 = 0.3849 corresponding to Tsn1 = 0.1007 and ccrit2 = 0.1283 corresponding to Tsn2 = 1.8113, when the

nullcline X2 = ε1(X1− s1)(X1− s2)(X1− s3)/c is touching the nullclines X2 = s1 and X2 = s3, respectively. The values355

given for Tsn1 and Tsn2 are computed for the rate v =−0.15, i.e. Tr = 2. We start with the drift at c = 0.4 and end it at time

Tr at c = 0.1, corresponding to the two values for which we have shown the frozen-in basins of attraction in Fig. 5. Instead of a

single trajectory, we again compute the time evolution of a whole grid of initial conditions to calculate the basins of attraction

after the parameter drift and show additionally exemplarily 20 trajectories starting at different positions in state space. Here we

define the non-autonomous basin of attraction B̃(Ã) as the set of initial conditions which reach quasistationary state Ã along360

a trajectory which includes the parameter drift. The result, shown in Fig. 6, demonstrates that the basins of attraction have

been changed (compare to Fig.5). We note that the non-autonomous basins of attraction B̃ look quite different from the ones of

the frozen-in case B, which indicates that the location of the boundaries, as well as the relative size of the basins of attraction,
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Figure 6. Non-autonomous basins of attraction with decreasing impact of the driver c in the interval [0.4,0.1] together with 20 exemplary

trajectories spread over the state space (ε1 = 1, ε2 = 1). The basins of attraction are shown after the linear parameter drift in the time

interval 0≤ t≤ 2.0 (fast rate v =−0.15 and Tr = 2.0, left panel) and 0≤ t≤ 8.0 (slow rate v =−0.0375 and Tr = 8.0, right panel). The

trajectories are plotted in black during the parameter drift and in white after the drift when c is constant at c = 0.1. Line type of trajectories

during drifting: solid line: 0≤ t≤ Tsn1; dashed line: Tsn1 ≤ t≤ Tsn2; dotted line: Tsn2 ≤ t≤ Tr (see text). Attractors are indicated by ’*’.

Magenta curves: nullclines at the beginning of the parameter drift t = 0 and c = 0.4, green curves: nullclines at the end of the parameter drift

t = Tend = 200 and c = 0.1.

depend crucially on the rate of change of the environmental forcing. New saddle points and their stable manifolds appear during

the parameter drift. In the autonomous case, the stable manifolds would make up the boundaries of the newly formed basins365

of attraction. However, comparing the non-autonomous basin of attraction B̃ at the final value c = 0.1 after the parameter drift

and the frozen-in basin B reveals that the new boundaries of the basin of attraction after the drift are different from the stable

manifolds of the corresponding saddle point as the saddle point does not even lie on the boundary of the non-autonomous basin

of attraction B̃.

To understand the tipping in more detail, we have plotted some particular trajectories and observed that some trajectories370

tip while others don’t. During the parameter drift, 0≤ t≤ Tr, the trajectory is plotted in black, while for Tr < t≤ Tend, when

the driver strength c is constant again, the trajectory is shown in white. During the drift, the two saddle-node bifurcations

mentioned above have been passed. Therefore, the time interval between the start and the first saddle-node bifurcation when

the nullcline Ẋ1 = 0 touches X2 = s1 is plotted as a solid line, the time interval between the first and the second saddle-

node bifurcation when the nullcline Ẋ1 = 0 touches X2 = s3 is plotted as a dashed line and beyond that as a dotted line.375

This illustrates clearly the response of the chosen trajectories to the bifurcations happening “along the way”. While tipping

trajectories change their course in state space when the bifurcation occurs to reach the newly emerging stable states, the tracking

(non-tipping) trajectories follow their path largely undisturbed. In Fig. 6 (right panel), the drifting time Tr = 8.0 is relatively

large corresponding to a low rate of change v =−0.0375 while in Fig. 6 (left panel) the drifting time Tr = 2.0 is relatively
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small corresponding to a larger rate of change v =−0.15. We note that for a fast drift, more initial conditions reach the new380

stable states. This observation can be explained by the interplay between the dissipative timescale with which the trajectory is

moving through the state space towards the quasi-stationary attractor and the rate of environmental change: if the trajectory is

fast enough (for a slow environmental change), it will have converged already to a position close to the old attractor, when the

new basin boundaries emerge. By contrast, when the environmental change is fast compared to the speed of the trajectory, the

newly formed basin boundary will already have emerged, forcing the trajectory to change its course. As mentioned above, a385

tipping trajectory belongs at the start to one basin of attraction and changes on its course to another basin of attraction.

Looking at the basins of attraction as a whole, we note by comparing the right panel of Fig. 6 with the right panel of Fig. 5

that for the slow rate of environmental change, one of the attractors is not reached at all, the light green basin has “disappeared”

at least in the region of state space considered. As a consequence, the corresponding emerging attractor at (X1 ≃ 1,X2 = 3)

would not have been observed for any of the considered trajectories. We say that this qualitative change in the state space390

resulting from the saddle-node bifurcation has been masked by the parameter drift. In other words, a global change in the

dynamics would not have been noticed though we simulate a whole set of initial conditions covering the specified region in

state space. To study that further, we now look at the variation of the relative size of the basins of attraction for different rates

of environmental change (Fig. 7 left panel). We note that the relative size of the non-autonomous basins of attraction depends

crucially on this rate of change v, and there is a critical rate vcrit corresponding to a critical Trcrit, where the green basin395

is not visible anymore, corresponding to the masking effect. This rate-dependent transition in the relative basin size can be

again explained by time scale arguments. For a slow rate of environmental change (large Tr), where the masking effect occurs,

the dissipative time scale acts faster than the rate of change, i.e., the trajectory has already reached the neighborhood of the

attractor before the bifurcation happens, i.e., before the qualitative change in the partitioning of the state space appears. This

bifurcation is “hidden” for all the trajectories. By contrast, if the rate of change is very fast for smaller and smaller Tr, the400

bifurcation becomes “visible” since more and more trajectories change their course due to the new partitioning of the state

space. This behavior is illustrated by the tipping probabilities indicating how many trajectories change from one basin to the

other (Fig. 7 (right panel)). The continuous change of the tipping probabilities indicates that we observe partial tipping.

To get deeper insights into the mechanism of basin boundary crossing of a particular trajectory, we analyse for Tr = 2 the

trajectory starting at (X1,X2) = (0,4). It has been tipped when comparing Fig. 6 left and right panels during the drift of c from405

c = 0.4 and c = 0.1. The critical rate for this trajectory to tip for the first time is at Tr = 2.1698 corresponding to v =−0.1383.

As illustrated in Fig. 8, the trajectory tips after the saddle-node bifurcation has happened, and the trajectory reaches the moving

saddle point. The same applies to all other initial conditions on the non-autonomous basin boundary at this critical rate. Some

additional example trajectories are shown in Fig. 8, all leaving the basin of attraction via the saddle point. Some of them

approach earlier the stable manifolds of the emerging saddle and move in its neighborhood towards the saddle quasistationary410

state. At the moment of tipping all trajectories are crossing at the saddle point, which is equivalent to the basin boundary of the

frozen-in case, but not the boundary of the non-autonomous basin. This means that basin boundaries in the non-autonomous

case, according to our definition, are no longer identical with the moving stable manifolds of the corresponding saddle points

but are made up by the set of initial conditions in the past which reach those moving stable manifolds after integration of the
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Figure 7. The relative size of the non-autonomous basins of attraction (left panel) and tipping probabilities (right panel) for the master-slave

coupled systems depending on the rate of environmental change measured in Tr (ε1 = 1, ε2 = 0.1, bstart = 0.4, bend = 0.1 ).
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Figure 8. Tipping of trajectory starting at the non-autonomous basin boundary; just next to the boundary in the green basin (left panel) and

just next to the boundary in the yellow basin (right panel). The blue nullcline is plotted at the saddle-node bifurcation t = Tsn2 = 1.9653, the

black nullcline at t = Tr = 2.1698. Black trajectories denote the time evolution during the drift, while magenta trajectories show the time

evolution after the drift when c = 0.1 is constant again. For an explanation of the line types, see Fig. 6.

whole system including the parameter drift. These non-autonomous basin boundaries depend strongly on the rate of change of415

the environmental parameters.

So far, we have only varied the rate of environmental change but left the intrinsic timescales of the two systems equal to

make the systems identical. However, different intrinsic timescales contribute also to a change in the dynamics. This approach
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Figure 9. Non-autonomous basins of attraction with decreasing impact of the driver c in the interval [0.4,0.1] together with 20 exemplary

trajectories spread over the state space. The basins of attraction are shown after the linear parameter drift in the time interval 0≤ t≤ 2.0

(left panel) and 0≤ t≤ 8.0 (right panel). The trajectories are plotted in black during the parameter drift and in white after the drift when

c is constant at c = 0.1. Line type of trajectories during the drift: solid line: 0≤ t≤ Tsn1, dashed Tsn1 ≤ t≤ Tsn2, dotted Tsn2 ≤ t≤ Tr

(see text). Attractors are indicated by ’*’. Magenta curves are the nullclines at the beginning of the parameter drift t = 0 and c = 0.4; green

curves are the nullclines at the end of the parameter drift t = Tend = 200 and c = 0.01.

is illustrated in Fig. 9 for the two different rates of the parameter drift. Now, one of the systems has a faster time scale than the

other given by the different values ε1 = 1 and ε2 = 0.1. Note that varying ε1 acts on the nullcline Ẋ1 = 0 in such a way that it420

would change the movement of this nullcline according to the ratio between c and ε1, while varying ε2 leaves the movement of

both nullclines Ẋ1 = 0 and Ẋ2 = 0 unchanged. Therefore we focus on the second case of varying ε2 to concentrate again on the

dynamics of the basins of attraction. We find that, although bifurcations and nullclines remain the same, the non-autonomous

basins of attraction change again, leading to rate-induced partial tipping of trajectories via basin boundary crossing. This

finding becomes visible by comparing Fig.6 (left panel) and Fig. 9 (left panel) and watching, e.g., the dynamics of the initial425

condition (X1 = 0,X2 = 4).
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3.4 Coupled systems with mutual forcing

The second type of coupling we consider is a mutual coupling of the two systems having different time scales and different

strengths of impact on each other. This results in the following system of differential equations:

Ẋ1 = −ε1(x1− s1)(x1− s2)(x1− s3) + c1X2, (11)430

Ẋ2 = −ε2(x2− s1)(x2− s2)(x2− s3) + c2X1, (12)

ċ1,2 =





v for 0≤ t≤ Tr,

0 for Tr < t≤ Tend.
(13)

Here the third differential equation applies either to c1 or c2. In contrast to the previous case of a master-slave coupling, the

nullclines now vary with varying ε1 and ε2, leading to an even stronger impact of the timescale separation compared to the

unidirectional coupling. In the following, we study the tipping probabilities depending on the time scale separation and choose435

ε1 6= ε2. Furthermore, we extend the interval of varying the environment to c1,2 ∈ [0.4,0.01] to finally end up again with four

attractors when the drifting process is finished.

Let us consider the symmetrical case in which we assume the same coupling c1 = c2 = c and apply the variation to both pa-

rameters as indicated above. When checking again the dynamics in state space for two different rates of environmental change,

we note that the relative size of the basins changes even more dramatically not only depending on the rate of environmental440

change (Fig. 10 left and middle panel) but also depending on the timescale separation between the two subsystems (Fig. 10 left

and right panel). Comparing the slow and the fast drift of the environmental parameter, i.e., the coupling strength, we observe

that even two basins have “disappeared”.

When we continuously vary the rate of environmental change to identify the rate-dependent masking effect, we find that

the relative size of the non-autonomous basins of attraction and the tipping probabilities vary non-monotonously in the case445

of different timescales ε1 and ε2 (Fig. 11). This finding demonstrates that the masking effect for bifurcations in more general

systems exhibits a highly complex dependence on the timescales, which makes it rather difficult to predict.

The computations we have demonstrated were limited to the symmetric case in terms of the coupling strength, and we have

only taken an asymmetry in the time scales into account. The other case of symmetry breaking based on employing different

coupling strengths and equal time scales of the subsystems will yield similar results. This conclusion becomes immediately450

apparent since with rescaling the time in terms of τ = ε1t, it turns out that only the ratios between the intrinsic timescales of

the different subsystems ε2/ε1 and the ratios between the timescale of transport via coupling and the intrinsic dynamics (like,

e.g., c1(2)/ε1) are important.
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Figure 10. Basins of attraction for a non-autonomous system with decreasing impact of the mutual coupling c1 = c2 = c in the interval

[0.4,0.01] together with 20 exemplary trajectories spread over the state space. The basins of attraction are shown after the linear parameter

drift: left panel: ε1 = 1.0, ε2 = 0.1, fast rate Tr = 2.0, middle panel: ε1 = 1.0, ε2 = 0.1, slow rate Tr = 8.0, right panel: ε1 = 0.1, ε2 = 1.0,

fast rate Tr = 2.0. The trajectories are plotted in black during the parameter drift and in white after the drift when c is constant at c = 0.01.

Line type of trajectories during the drift: solid line: 0≤ t≤ Tsn1, dashed Tsn1 ≤ t≤ Tsn2, dotted Tsn2 ≤ t≤ Tr (see text). Attractors are

indicated by ’*’. Magenta curves: nullclines at the beginning of the parameter drift t = 0 and c = 0.4, green curves: nullclines at the end of

the parameter drift t = Tend = 200 and c = 0.01.
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Figure 11. The relative size of the non-autonomous basins of attraction (left panel) and tipping probabilities (right panel) for the mutually

coupled systems depending on the rate of environmental change measured in terms of Tr (ε1 = 1, ε2 = 0.1, bstart = 0.4, bend = 0.01).
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Figure 12. The relative size of the non-autonomous basins of attraction (left panel) and tipping probabilities (right panel) for the diffusively

coupled system depending on the rate of environmental change measured in terms of Tr (ε1 = 1, ε2 = 0.1, bstart = 0.4, bend = 0.01).

3.5 Coupled systems with diffusive coupling

Finally, we address the third coupling scheme, diffusive coupling, often used when coupling systems bidirectionally. In this455

case, the overall effect of the coupling depends on the difference between the variables. The corresponding model system reads:

Ẋ1 = −ε1(X1− s1)(X1− s2)(X1− s3) + c1(X2−X1), (14)

Ẋ2 = −ε2(X2− s1)(X2− s2)(X2− s3) + c2(X1−X2), (15)

ċ1,2 =





v for 0≤ t≤ Tr,

0 for Tr < t≤ Tend.
(16)

For ecological systems, this would be the appropriate coupling when considering two populations in two different habitats460

coupled through species migration. The same coupling would be used for coupled chemical systems, where diffusion is as-

sumed to be the most important spatial transport process. Following the same protocol of numerical simulations with the same

parameter values, we observe that the masking effect occurs for much larger Tr, i.e., a much slower rate of environmental

change. But it does not disappear (Fig. 12).

4 Discussion and Conclusions465

We aimed to evaluate the consequences of a time-dependent variation of parameters or external forcing following a prescribed

trend in a multistable system. In contrast to many other studies, our focus was not on the stable long-term behavior, i.e., the

attractors, but on the unstable sets of saddle type since their stable manifolds make up the basin boundaries. Specifically, we

were interested in how the relative size of the basins of attraction varies in a non-autonomous system and how the “movement”
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of the corresponding basin boundaries influences the trajectories in state space. As already known from earlier works on470

rate-induced tipping, the time-dependent forcing implies that attractors like, e.g., stationary points become quasi-stationary

and “move” through the state space according to the trend (Wieczorek et al., 2011; Ashwin et al., 2012). Whether a trajectory

tracks those quasi-stationary points or tips is the central question of rate-induced tipping. However, this property of quasi-

stationarity applies not only to attractors but also to the unstable saddle points in the system. In a multistable system, in which

several attractors coexist, those saddles are important determinants of the global dynamics since their stable manifolds make475

up the boundaries of the basins of attraction which organize a “partitioning” of the state space in the sense that they separate

regions in state space with different qualitative behavior. Since the quasi-stationary saddle points “move” through the state

space, the associate basin boundaries do that too, and this has tremendous consequences for trajectories as they can cross in

non-autonomous systems the basin boundaries. This effect has been termed basin instability (O’Keeffe and Wieczorek, 2020)

or basin crossing (Lohmann et al., 2021).480

We have demonstrated the mechanism of basin boundary crossing employing a system from population dynamics possessing

an Allee effect. In this model, the basin boundary crossing occurs for varying the critical population density corresponding to

the “moving” saddle point making up the basin boundary. In the case of crossing, the trajectory tips when it meets the moving

saddle point, i.e., the moving basin boundary. Then we addressed the question of what happens in higher dimensions when

the basin boundaries are not just saddle points but hypersurfaces in state space that are moving and/or even changing their485

shape. In addition, basins of attraction can even appear and disappear in bifurcations, e.g., in a saddle-node bifurcation. The

classical definition of a basin of attraction applies only to the frozen-in case with fixed parameters. To extend this definition to

non-autonomous systems, we have called a non-autonomous basin of attraction the union of all those initial conditions which

converge to a particular quasi-stationary state, including the parameter drift. As an example, we analyzed two coupled, rather

general bistable systems with different coupling schemes, which have been studied in a similar form already in the context of490

tipping cascades. In climate science, the most interesting coupling is the master-slave coupling, which is particularly used to

investigate tipping cascades in two or a few coupled natural systems (Klose et al., 2020; Wunderling et al., 2021; Kroenke et al.,

2020). One example is the impact of the melting of the Greenland ice sheet on the AMOC (Mehling et al., 2022; Klose et al.,

2023) or tipping in unidirectionally coupled networks (Kroenke et al., 2020). Additionally, we have studied mutually coupled

systems where each subsystem is a driver for the other. Finally, we have compared the results to a diffusive coupling used in495

many physical systems.

To study the impact of moving non-autonomous basin boundaries in detail, we have focussed on a simple system with

smooth basin boundaries in the whole parameter range, not fractal ones. The most straightforward situation in which basin

boundaries are important is the saddle-node bifurcation of steady states in which a new stable steady state occurs together with

a saddle point whose stable manifolds make up the basin boundary for the newly appearing steady state. Apart from details500

that are related to the different coupling schemes, the main findings are qualitatively the same for all of them. In our setup,

two different timescales are involved, the intrinsic dissipative timescale of the dynamics of each subsystem and the time scale

of the environmental change, which in our case was influencing only the coupling strength. We found that the relative size

and the shape of the non-autonomous basins of attraction depend strongly on the rate of environmental change of parameters
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or external forcing. As a consequence, initial conditions that would converge to one attractor in the frozen-in case tip into505

another basin of attraction during the parameter drift. This leads to a partial tipping of trajectories. In addition, we showed that

for each finally tipping initial condition, there exists a critical rate of environmental change for which this tipping occurs for

the first time. Hence this tipping process fulfills the requirements of rate-induced tipping as defined in (Ashwin et al., 2012;

O’Keeffe and Wieczorek, 2020). When the rate of environmental change becomes slower and slower, the newly appearing

basins of attraction are less and less detected by the trajectories leading to shrinking non-autonomous basins of attraction. This510

process happens gradually until even the last initial condition fails to tip to the newly formed basin beyond the saddle-node

bifurcation. In other words, the corresponding basin of attraction “disappears” and the emergence of a new attractor is masked

by the parameter drift.

The tremendous consequences of that masking effect become more evident when we discuss it from the point of view that

anthropogenic changes in parameters/forcing are accelerating corresponding to an increasing rate, which means lowering the515

time interval Tr (reading Figs. 7,11,12 from the right): Suppose our simulated trajectories would be observations starting at

some time in the past to monitor the impact of changes in the environment. Assume further that the saddle-node bifurcation

occurring along the change of environmental forcing gives rise to a new dangerous, possibly undesired stable state, implying

dramatic changes in the global dynamics. Then we observe the following: the slower the environmental changes happen, the

smaller the probability of detecting the change in the global dynamics in any of those observed time series. A critical rate of520

change exists below which the emergence of the coexisting dangerous state (beyond the saddle-node bifurcation) cannot be

detected at all since none of the considered trajectories tips, i.e., the bifurcation, is masked. This detection threshold corresponds

to the critical rate where the tipping probability to the newly formed dangerous state becomes, for the first time, positive. The

tipping probabilities increase gradually and become considerably larger only when the environmental changes are already

quite fast. This detection threshold beyond which the global change in the dynamics will be signaled by tipping trajectories525

depends strongly on the relationship between the time scale of environmental change and the intrinsic time scale of the system

dynamics. In general, our results suggest that the faster the intrinsic time scales are compared to the rate of environmental

change, the lower the probability of detection due to the small tipping probabilities. While for the master-slave and the mutual

coupling, those detection thresholds occur for rather small Tr, i.e., rather fast critical rates, this threshold corresponds to a

considerably larger Tr, i.e., a much slower rate of environmental change, for a diffusive coupling. As long as the global change530

in state space remains masked or hidden, we would not detect the emergence of a new dangerous state by our monitoring time

series starting in the past. However, since a new dangerous state has appeared without notice, other tipping mechanisms like

noise-induced or shock-induced tipping could tip the system into that undesired state without any warning.

We have further unraveled the mechanism of how the trajectory tips from one basin of attraction to the other by crossing

the basin boundary. This rate-induced basin crossing happens at the saddle point; either the trajectory “meets” the saddle point535

directly or it approaches first the neighborhood of its moving stable manifold and travels along it until the saddle point is

reached for the crossing.

An analysis of the relative size of the basins of attraction and the tipping probabilities in a highly multistable system with

fractal basin boundaries has been provided by Kaszás et al. (2019). This latter study focused on the statistics of tipping proba-
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bilities and a phenomenological description of the transitions happening when the parameter drift covers not only a saddle-node540

bifurcation but also other bifurcations and even a chaotic region. Our results here and the ones obtained by Kaszás et al. (2016);

Kaszás et al. (2019) lead to the same conclusion: While most literature on multistable systems focuses on the investigation of

attractors, i.e., the stable long-term states of a system, and their bifurcations, this study suggests a necessary shift in the

paradigm of analyzing nonlinear dynamical systems in climate science, ecology and beyond: unstable saddle-type states, either

saddle, steady states or saddle periodic orbits with their associated stable manifolds as well as chaotic saddles with their asso-545

ciated stable foliations, are of equal importance and need a lot more attention in future studies on non-autonomous dynamical

systems. Moreover, rate-induced tipping phenomena, which are closely related to those saddles, have to be identified since

their “movement” in state space under a parameter drift determines the fate of any trajectory. Those unstable saddles are the

organizing centers of the basins of attraction in a multistable system and as such play a decisive role in rate-induced tipping by

crossing basin boundaries.550
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